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Summary

Hanayama (2001) proposed a simple two-stage (STS) model for cancer death
rates on the Lexis diagram. STS model belongs to neither the class of the
generalized linear models nor the class of generalized additive models which are
used in ordinary studies of survival data, hence, the properties of MLEs for those
models are not relevant for STS model. So, in this paper, it is seen that the
problem of getting MLEs for STS model results in that for the models on right-
censored survival data and the existence and consistency of MLEs for the

proposed model are proved.
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1. Introduction

Hanayama (2001) proposed a simple two-stage (STS) model for cancer death
rates on the Lexis diagram to project cancer risk in the environment referring to
the two-sage cancer growing process which is elaborately studied in the field of
biostatistics. (See Moolgavkar and Venzon, 1979, or Dewanji et al, 1999, for recent
studies of the two-stage model) Though it is seen that STS model belongs to the
class of Poisson regression models, the model is nonlinear even if we adopt some
link-functions used in the generalized linear model (McCullagh and Nelder, 1989).
Because of that, the tools for GLIM are not available, hence, we have to get MLEs
by solving the maximum likelihood equation directly. So, our aim in this paper is to
make sure the existence and consistence of MELSs of the parameters in the model.

In the next Section 2, we introduce STS model and show its properties for
MLEs, where it is seen that the problem of getting MLEs for STS model results
in that for models on the right-censored survival data. In Section 3, the existence

and consistency of MLEs are shown in the manner of Lehmann (1983, pp. 427-432).



2. STS Model
2.1. Basic Idea
Consider cancer incidence rates of age u and time (year) v denoted by u(y,
v), where (u, v )€ [0,a) x [0.b). Now notice that the intensity function u(u,v) is
the one for individuals who were born at v —u€(—a,b) and are still alive at v
€ [0, ). Then, hanayama (2001) proposed a model which assumed that
uwv)=[" E(Oy(v-1)dr, (2.1)
where &(t) (t€(-a, b)) is the intensity with which cells in a body of individual
alive at t have been primed by carcinogen existing in environment during [z,
t+d), and y(s-1) (s€[0, b), s-t€[0, a) and s>1) is the intensity with which a cell
primed at t€(—a,b) has grown to be terminal cancer during Ls,s+ds).
Although (2.1) is presenting the basic idea for the model, we cannot apply it to
data given by 5-year age groups. For the analysis of such data, the piecewise
constant intensity (PCI) models on the Lexis diagram is known as a useful tool.
(See Keiding, 1990.) So we reconstruct the model (2.1) as one belonging to the

class of PCI models in the followings.

2.2. STS Model for Piecewise Constant Intentisy

Suppose that the age and time intervals [0,a) and [0,b) are divided into I
and J 5-year intervals respectively so that a and b are written as a=5I and b=5J,
where I and J are fixed integers. Assume that

U (wv)=p;; if (w,v) E Wi = {(u,v) | (u,v) E[5(-1),51) x [5j-1),5))}
w(uv)=w; if (w,v) € Wy = {(w,v) v-u € [5(j-i-1),5(j-i)) and u € [5(j-1),5))}
where i=1,---J and J=1,"-,J. (Figure 1 illustrates W;'s on the Lexis diagram. In
the figure the abscissa and ordinate represent time and age respectively, solid
oblique lines represent individuals being alive, and the squares figured by
dotted lines represent W;'s) Then, the model is reconstructed as
Wiy = (@) = é SV j—k+1 - (2.2)
k=j—i+1

where 8 =(wi, W, E2-0 81 €O =HO [y >0,y E(—0,0)i=2 1 1,54>
0:k=2—1-J, u;( 0 )>0for i=1+I;j=1,-J}. Now notice that w;>0 because it is
supposed that u,;(#)>0 and ;>0 . (Figure 2 illustrate parameters in the

model on the Lexis diagram.)
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Figure 1. W;'s on the Lexis diagram when /=6 and J=4.
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Figure2. The parameters in STS model on the Lexis diagram.
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2.3. Likelihood Function and Identifiability

Let XZ-') (n=1,"-*.N;) be a random variable representing the survival time for
the n-th member of those who are alive over W;, and D,-(j") be an indicator
describing whether he/she has died of cancer over W; (D,(,-")=1) or not (D,(;’)=0).
And assume that

Pr| X,.(j") elxx +dx)| X,.(j") >x | = (u + Ay dx. 2.3
where ;s represent the death rates of other causes. Then, the contribution to
the likelihood based on an observation (x,] df,")) on (X,(,") D,j 'Y is

LY (0)={ i(0)) 4 exp |- iy (O)+Ay |

Thus the likelihood based on observations (x,, , ,,))s is proportional to

L@)= 1‘[l [TL0.0)- H Hu,," @ e [-fus@r+ 23] @
i=1j=l1 i=1j=1
where d;; EZnN"l dj” and x; Z x{" (See Keiding, 1975) The function is of
well known form in previous studies of PCI models on the Lexis diagram. (See
Keiding, 1990, Berzuini and Clayton, 1994, Robertson and Boyle, 1998, for
example.)

Though MLEs of are obtained by maximizing L(6), it is a function of 6 only
through u(8)=(u11(8)u1.40). 21(0) oA 0)re+ pta(O)re 12 O).
Hence, we have to see if 8 is uniquely determined for every u=(u 11, M1 M 21,
Mg, ,uz.l,"',uz,})'EME{ulu=u(0),0 € O} from the equation u=u(8).
As for this problem, Hanayama (2001) gave a proposition where it is shown that

the value of g(y1, #) is uniquely determined from the equation

’

u(0)= (Wl - Wlfz L Wlfj)

for every u €M unless u satisfies

Migrio1™ Mi-reri—1 (= Cewi)=0 5 i=ay, by~ 1, (25)
for more than one k, where w; is a positive constant and a,=max{1,2— i,
by=min{lJ— k+1}.

Because of the above proposition, we may assume that 6=(1,6.) where

0*=(ws, v, - &) and have the likelihood equation with respect to 6
like
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dlog L e « 1,6+ )" ( d; .
ZZ X _ 5 =0274y-2, (2.5)
06 . = 9* i=lj= [ iy (« 1, O ) ) 6 = 0.
where

Oup(1,65y) | (0010 Wi, 1,0, ) if i= Ly j= 1

06: 0,10 ' 1,0, ) T
(ng—l»""ézj—iﬂ» I-i-1>Vj-1+1-i Yo »¥2, LYy ) j=1-J,

and 0, indicates a /-dimensional row vector whose componenents are all zero.

Thus, the solution 6. is obtamed as a MLE consistent for (y2/ wl - w?/ wlwl &

0.
9wl &), where ék s and 1//,- 's are the true parameters.

3. Existence and Consistence of MLE

The likelihood equation (2.5) has the same form as would have been obtained
when D s (= Z " D ) are assumed to be Poisson distributed with mean i (0)xs,
so that STS model belongs to the class of Poisson regression models. However.
the model is nonlinear even if we transform u, by some link-functions used in
GLIM (McCullagh and Nelder, 1989). So, the tools for GLIM are not available,
hence, we have to get MLEs by solving (3.4) directly. Because of that, it is needed
to make sure the existence and consistence of 6, . Thus, in the following, the
existence and consistency of MLEs are shown as the totals of survival time are
regarded as random variables. The way of discussion is in the manner of
Lehmann (1983, pp. 427-432).

The complexity of the proof of the existence and consistency is due to the fact
that Nys are random variables, and (X},D}) and (X},,,.D},;,), where X,;EZ;V:’]
XU(»"), are not independent each other. So, for the convenient to prove the existence
and consistency, we introduce the following notations. First, let m,, (=1, M) be a
given constant which is the numbers of those who were born in the time interval
[5(,j-i-1),5(j-i+1)). Further, let ¥."" be a random variable representing the
survival time for the m, th member of those who were born in [ 5( J-i-1),5(j-i+1))
over W, and E."" be an indicator describing whether he/she has died of cancer
over W, (E"=1) or not (E=0).

Then, in the followings, we will show that there exists a solution which is
consistent for 6+= yu'/ y', i/ W', €, w €)', with probability tending to 1.

as the minimum value of M,;’s, M,,, say, is infinitely large, as long as it is assumed
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that
—l—eh,o >0 for [=2-1,...J as M, —>0. (3.1)
min
Now, for the purpose of showing the existence and consistency, we state the

following properties of the likelihood function:

[ Mw alogL,, ((19*))]

g (22 2 0

i=lj= lmj,.:

’

where B mj=i) -i)
j (9) = {,uzj(e)*eu exp[ ﬂu(9)+ﬂ’u} i T }

(See Appendix A for the proof.)

07210ngJ ')((1 6+ )"
- |

06x 06+«

[[&ﬂ:j((lﬁ*’)') EC-) ou((1,64))
96 {uy((1.8))HF 96k

() P80 1
u((1,6)y 96506+

om0 9*))[1—exp[ (y (1,8 + AT H

ae* :ulj((l 9* ) )(:ul_]((l 0* ) )+ ﬂ'u)
M;-i mi_y | Oty ((1,6+)")
xexp{ -y (1, 9*)+/1,])r( a ')}—4&}—-,
mj_,-._] *

where 7,7 is the maximum value of Yy for fixed my;.
(The proof of this is essentially given in the proof of (P1).)
(P3) There exists a functions C,j i of (E (E; ) Y,Sm""') ) ({,m,n=1,-++, 1+2J-2) such that

e e
l m=<n

(m 1)
X,
for all G«€ O«={0+|y,E(—00,0) ; i=2,+1,§>0 ; k=2-1",J, w;; (1, 6+))>0 for i=1,
oo I; j=1,-,J}, where

o i, o 1<I<I-1
1_{5l+1-1 if I<l<2l+J-2
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and ¢/, =E Clinn (D X"y | <00 for all at neighborhood of 5.

(See Appendix B for the proof))

Now we give the following proposition.

Proposition 3.1. Consider a sphere

Q,(6h)= [ 6:| 6.0« and |6~ ] =a |.
Then, for any sufficiently small >0, the probability that

log L(1,6: )') <log (1,64 )") atall @ e, (&) (3.2)
tends to 1 as Ny~ .

(See Appendix C for the proof)

Hence the function log L((1, #)) must have a local maximum point interior of
Q, (68) with probability tending to 1 as M,,;,—°°. Further, because the above
proposition holds for any small >0, such a local maximum point consists with 6+

as M;,—* 0.

4. Concluding remarks

We have shown that the existence and consistency of MLEs of the parameters
in the proposed model in Section 3. Miao and Hahn (1997) showed the existence
and consistency of likelihood estimates for multi-dimensional exponential families.
Although the Poisson model is a special one belonging to multi-dimensional
exponential families, the way of discussion in the manner of them does not suit to
our model. This is due to the fact that the joint distribution function for (X};.D})'s
can not be expressed by the canonical form of the exponential families

immediately because of the fact described there.

Appendix A (Proof of (P1))
Let ¥;” be a random variable representing the survival time in W for m;,th
member (m;-,=1,*M;_;j—i=1-1--J—1) those who were born in the time

interval [5(—i—1),5( —i+1)) and E,;mj’i) be an indicator describing whether he/she

has died of cancer over W; (E,""=1) or not (E{""=0), Then we have .......
I I Njg,. "y (n)
Wi (1, 6 )") D;j (1)
4222 * ( -%)]

i=l j=ln=| (1, 6"



= E[ZI > Mil (1 6 )" < E’gmj—i) _y(mi-i) ) ]

=l jzimi = 2, ((1,6)") ’ o
M . L (i) (A1)
=é2 5 2CAD [ ( & —y ) :>_0]Pr (") o)

i=1j=lm;_;=1 b Hij (1, 6*,)') y J
(m;_i)
E[(_Eij__n,j(_mj-i)) Yl§m,-,)>0 ]Pr (mj R }
pi,j ((1,6))

In the above formula, it is apparently found that

gMi-i)
E[( 1} - _ Y.(.mj-i))

— v, " =0 ]-o0. (A2)
,ulj((l, 8* )’)

U

Besides, E,i-mf'” and Y,;"nj"') are independent each other because both of u; and 4;
are constant in Wi(,mj’[). Thus, other terms in (A.l) are calculated separately. First

the expectations of E," are written as

£ | 750
= Pr{Y(mJ'e[yy+dy) E(f' _1} p i >0}
0<y<7§jmj'i)
* , v , (A.3)
= i ((1,6)) exp {=( 1 ((1,65)) + )y fdx
O<y<'rf}mj 2
1 (1,64 : (m;_;)
= —— [I—CXP{—(ﬂIJ((lﬂ*)'H AT H
M ((1,65) )+ Ay
where 1" =5(i-j+1)+b." Next, the expectations of " is written as
I:Y(mj 1) ‘ Y[;mi-i) >O }
= J. y(py (L)) + A )exp{—(ﬂ,-j((la@*')') + /\l}<+i)y]dy
Ocy<r =" (A4)

+Tl.(jm’"i)exp{ (,ulj((l 6*))+/\ )) (m"')}

1, [l—exp{ (# ((1,6+)) + A, ) mj-) H
1, ((165)) + Ay

From (A.1), (A.2), (A.3) and (A.4) and we have the equation (P1).
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Appendix B (Proof of (P3))
Supposed that the nth member of those who are alive over W, is the same as m, th

member of those who were born in the time interval [5(j —i—1),5(j —i+1)). Then,
we find that

PlogLP(n) _ Iu, (1.6+)) Py ((16))  EY

801 39m39n 891 079m89n {lulj ((1’9*')r) ‘2
_ 92;1,,- ((1,65)") Ju; ((1,6+)") Efj’"f-"
96,98, 9, {u (16 (B.1)
B L T DO
696[ 86”’ (99n ,:ulj ((1’9*')1) }2
o It ((1.6+)) Iy (1.6+)) Ipy((1,65))  EJ"
%, 9, %, (1,65}
where
, , F1<i<i-1
Suy((1,6)) | ! ylsisi |
= A\ Wiiq-p Y JoiH1SI=21+2<
96, |
otherwise
Fui (1,6 (1 if j—l=m=21+2
07197&6’:1 "1 0 otherwise ,
and

& u((1,6:)")

= =0 forall [ m, n.
6, 06,06,

Thus, by considering a functiion, C](i’j) say, whose order is greater than

mn

1;((1,6+)") when 4;((1,6+')")> 1 or less than Ly (1,617, we have

L J 0 log Li((1,6+)")

22

(mj_3),
Sk sk sk
i=1j=1 ‘991 c9‘9m&6?n

<) (E; s Y.(’nj'i)'s)

Lmn ij >

(B.2)
for all for all 6« €®« , and

1

CI(I';IJ': =E [Cl(lr;zlr)z (E;,nj—i)'sr Y-j(mj_i)'s)]<oo forall [, m, n.
Appendix C

To obtain needed facts concerning the behavior of the likelihood on Qa(é’f ) for

small a>0, we expand the log likelihood about @+ and divide by M., to find
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log L(mf (1, 8) - v logL(m i), a?)}

min min

1 J Mt gui1, 64
oy $ ¥ 3 26
min j=] j= lm~_-=1 3&*

(m; ) (m;_;)

A () )

6=6,

1 Y mp, mi (mo 9 (L))
+= (= QY Z): 2 A (M) w)_—i—,—
2 Nrnin iz j=t m,_ =1 { ’ ’ 7y M 6n =6 C.1
A (L&) (1, 8')'
LGN g ) my) (L, B)') | 6. 6
I, =t U i 30, b=
1 [+2] -21+2] -21+2] -2
e X % X (6 -6"6,-6,)6,-6,"
=1 m=1 n=l1
L1 A/Iii (lj) (m] l) (mj z) C(lj) (m_[ l) j 1)
Xzz M lmn( ) lmn(e ’ylj ) }
i=l j=1 mj_,:l min
= $,(8., 80)+ S, (8, 80) + S5(6,, 6,
Wheﬁ: ), (mj=) (mj=;) ey (mp-) | plmi-), (m e Mi-i)
P s m:_: m;
Aijjl(euj"yuj’)z( - 0 —yijj—l )’B ”(elf )= - 0’
(1,6 (g (1, 6 )))?

and, by the property (P3),

0 <l iod) (elﬁ.’"f-'), (mj- J)C(z ;)( (m;- )y(m,._,.>) <1

Yimn ij

To prove that the maximum of the difference

(m - i) ( j i) 0
max logL (1,6)- —— log (1,6 )}<0
6.0, (ak){ Mmm '

with probability tending to 1 for any sufficiently small a>0, we will show that
with high probability
milx@?)[Sz(&,&(:)}<0 while akenéaazceg){sl(ak, e‘i)} and akergaazcdg){&(e*,a?)} <0
are small compared to S,. The basic tools for showing this are the facts that by
(P1), (P2) and the law of large numbers
1 J M dlog (’"’ 21, 6)
XXy~ L g a=0

i=1j=1 min m;_;=1

(C2)
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M;_i
_Zé Mj—i JZ 1 aﬂ,j(l,g*) goA(mJ ,)( (mj_i) '('mj_;))
= =6 i » i
iz o Muin 1M P &
I J aﬂ(l»e*) ( 2i) (m )
0 i m 1 -i _
> XX jag 6,=6 [A " (E X7 |=0
i=lj=1
in probability, and
¢ Jop M Plog 10 6.)
' =00
i=1 j:leln mj—i=1 a&ka&k ak HIK
_iiMj'l }sz-_i 1 { (mj 1)( ("’l/() (mjl) a‘ulj(l 0*)
i=lj=1Mminmj_,.=1 i ij i ij 26.08;
au;:(1, mi), (mi). (1, s
Iy &) B J-')(e,(‘ J—l)) w1, 6 0}
A0x Y v 6. |6=b
I 7 M- (1, 0:)
0 (m; 1) -i) (mj 1) u’]
—>22hj_,. [A . (E " YT )]W
i=lj=1 mj_;j=1
aﬂ”(l ak)E (m} 1) (mj l)) aﬂ;(+l(6) }
6 26 |6=t
au.(1,6y)
__EZ ‘uU( hj()llj(e*)aﬂk+l(9)g_60
i=1j=1 P I
in probability, where
; [l—exp [—(,u,-j(l,a*) +/1,-j)1'§j i) }]
Ii'(ﬁ*)=
! 14 (1,0:) (a2 (1, 6:) + A7)
(m;_;)
X exp {— Z (uii(1,6:) + A;j)7y; }
m. .=1
j-i

Let us begin with §;. On Qa(&(b we have

Isl(a*, 4

LI Mt (1.6
(@a )3y ¥ ——

min - jypg-2 i=lj=lm; ;=1

mi_ M',) ( l)
O =6 fi'j )(ei(j ' Yij ).

With probability tending to 1, for any given a>0, it follows from (E.2) that

Ity (1.65)")
96,

(mj)  (mj_))

g =90Aij e T vy ) <da for I=1,.,1+2J-2

j=i




and hence that

J
5,66 < Y, m(1+27-2)d° (C4)
k=2-1

as Myi,—°. Next, consider

25, (8, 6%)
M nt
Ll ovﬂu((w*)) M, (Ho)o?/z,,((l,&k))

SRGRLIIN) Z w1 e

i=lj= lm ‘- min

(6*—4952)

*_

M._.
(g (- 9 bty ((16F)

i RO
(8- 6k —— v,
! igljglmzﬂ {Mmin Y ( Vi 06x06x

i

9*262

'j

aﬂ,((w*)) | . m It (1,6
f (8" ;") -1 <92))——”’(( ))‘9 gl

mm

0
For the second term, Si (8s,8.) say, it follows from (C.3) and an argument

analogous to that for §, that

|58 (6.

ZZhl (I+27-2)a’ (C5)

i=lj=
. . . 0 .
with probability tending to 1 as My;,—°°. The first term, s(0.,0.) say, is a

quadratic form in the variable (6. — 0.). Because the matrix
[ L oy (10*)) I ((1,6+))

2.2 56,

i=lj=
is positive definite as shown in hanayama (2001), by an orthogonal transformation,

0= 65

0
s, 0.) can be reduced to diagonal form
1+2 -2 142J-2

1)(6?* 90)— Z a)IO'l becoming Z 0'12—a on 6« eQa(HO) (C.6)
where w [ 's are negative and numbered so that w 1= w,="= wn22<0. Then it

is found that
[+2J-2 1+2J-2

2
Y, oo 20 2, of =00
=1 =1

Combining the first term and second term, that is, (C.5) and (C.6), we see that
there exist ¢>0,a¢>0 such that for a<ay

52(6?*,&«9)< —ca® on 6 eQa(HS) (C.7)

with probability tending to 1 as My;,,—°°. Finally, with probability tending to 1,
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zz z c}'mf,z< Dy <zzzh, R

mlnl 1j= lm i=lj=
and hence

|5,(6:,67)| < ba”, (C8)

where
I+2J—2I+2J 2[1¥2J-2 I J

b__ Z Z Z Zzhj lcglr’r{r)l

n=1 i=lj=1
on 6«eQ, (6’2). Combining the three inequalities (C.6), (C.7) and (C.8), we see that
with probability tending to 1 as M,;,,—*°,
max [S,(e*,a?)+ Sy (8, 60) + 53(&,9,9)]

I J (C9)
<-ca®+ [b+(+27-DF T, }ad
i=1j=1
which is less than zero if c
<
“ Ll . (C.10)
b+(1+2J-2) 3 h,
i=lj=1
and this completes the proof of Proposition 3.1.
[]
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